Abstract

Abstract In this work, a new soft dielectric elastomer (DE) was fabricated from dopamine coated barium titanate particles and silicone rubber (SR). The results showed that the barium titanate (BaTiO 3 , BT) was coated by dopamine and the coated particles were highly compatible with SR. In order to achieve a maximum voltage-induced deformation, the minimum secant moduli of DEs were obtained in experimentation at a stretch ratio of approximately 1.6 by applying equi-biaxial tensile strain using the bubble inflation method. Additionally, it was found that the addition of DP-BT into SR led to an increased dielectric constant and decreased dielectric loss tangent for the matrix by comparison with SR/BT composites. Furthermore, the electromechanical properties of the SR/DP-BT composites were greatly improved in terms of voltage-induced deformation ( s a ), electromechanical energy density ( e ) and coupling efficiency ( K 2 ). A maximum actuated area strain of approximately 78%, which was 30% larger than that of the SR/BT composites, was achieved for the sample having a DP-BT content of 20 wt.%. This strain corresponded to a low dielectric strength of around 53 V/μm, the composite exhibited a maximum energy density of 0.07 MJ/m 3 and coupling efficiency of 0.68.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.