Abstract

The unique interactions between hexadecanoic acid (HA) and albumin (ALB) molecules on the surface of the porous layer of AZ31 Mg alloy were exploited to fabricate a novel hybrid composite film with excellent electrochemical stability in a 3.5 wt.% NaCl solution. Herein, the inorganic layer (IL) obtained by plasma electrolytic oxidation of AZ31 Mg alloy in an alkaline-phosphate-WO3 electrolyte was soaked in an organic solution composed of ALB and HA for 10 and 24 h at 60 °C. Although albumin and HA may coexist on the same surface of IL, the higher reactivity of ALB molecules would prevent the formation of a thick layer of HA. The donor-acceptor complexes formed due to the unique interactions between ALB and/or HA and IL surface would reduce the area exposed to the corrosive species which in turn would efficiently protect the substrate from corrosion. The porous structure of the IL would provide preferable sites for the physical and chemical locking triggered by charge-transfer phenomena, leading to the inhomogeneous nucleation and crystal growth of a flowery flakes-like organic layer. DFT calculations were performed to reveal the primary bonding modes between the ALB, HA, and IL and to assess the mechanistic insights into the formation of such novel hybrid composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call