Abstract

Rechargeable batteries with solid polymer electrolytes (SPEs), Li-metal anodes, and high-voltage cathodes like LiNixMnyCozO2 (NMC) are promising next-generation high-energy-density storage solutions. However, these types of cells typically experience rapid failure during galvanostatic cycling, visible as an incoherent voltage noise during charging. Herein, two imidazolium-based zwitterions, with varied sulfonate-bearing chain length, are added to a poly(ε-caprolactone-co-trimethylene carbonate):LiTFSI electrolyte as cycling-enhancing additives to study their effect on the electrochemical stability of the electrolyte and the cycling performance of half-cells with NMC cathodes. The oxidative stability is studied with two different voltammetric methods using cells with inert working electrodes: the commonly used cyclic voltammetry and staircase voltammetry. The specific effects of the NMC cathode on the electrolyte stability is moreover investigated with cutoff increase cell cycling (CICC) to study the chemical and electrochemical compatibility between the active material and the SPE. Zwitterionic additives proved to enhance the electrochemical stability of the SPE and to facilitate improved galvanostatic cycling stability in half-cells with NMC by preventing the decomposition of LiTFSI at the polymer–cathode interface, as indicated by X-ray photoelectron spectroscopy (XPS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.