Abstract

Nowadays, a hybrid composite SiO2/C has been paid attention to improving battery performance in Li-ion batteries (LIBs) as the anode. However, this material unexpectedly suffers from initial active lithium loss caused by the solid electrolyte interface (SEI) formation leading to low initial Coulombic efficiency and significantly reducing the initial capacity. In order to solve these issues, pre-lithiation has been considered an effective approach to limit active lithium loss and increase cycling performance. This work focuses on the two most common techniques, including the direct contact method (CM) and the electrochemical method in half-cell (EM). After the pre-lithiation process, the anodes would be evaluated in full-cell with LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode. According to electrochemical properties evaluations, pre-lithiation could enhance discharged capacity and initial coulombic efficiency. Without the pre-lithiation method, the discharged capacity in full-cell only witnessed 66.9 mAh.g-1, while CM and EM methods illustrated a better battery performance. In detail, EM exhibited a higher discharged capacity and initial coulombic efficiency (137.06 mAh.g-1 and 99.08%, respectively) compared to CM (99.08 mAh.g-1 and 93.23%) method. Besides, the capacity retention using EM achieved 71.4% and the discharged capacity illustrated 97.87 mAh.g-1 after 100 cycles, which is better than using CM, which only showed 71.40 mAh.g-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call