Abstract

Abstract A parallel method for the fabrication of metal contacts on single-walled carbon nanotube (SWNT) arrays was presented and the electrical contact property was evaluated by a SWNT-field effect transistor structure. Copper and gold contacts were fabricated on both semiconducting SWNTs and metallic SWNTs by using a maskless electrodeposition process. The SWNT array remained a p-type semiconductor after the electrodeposition. The contact resistance between SWNT array and microelectrodes was reduced more than 50% by the established copper contacts. The source-drain current of the carbon nanotube field-effect transistor (CNT-FET) structure can be further increased from 7.9 μA to 9.2 μA when the copper contacts were replaced by gold ones, which is probably due to the better contact property to SWNT of gold contacts with fine grain size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.