Abstract

This paper is about the compared performance investigation of various structures of Hetero-Dielectric (HD) triple-gate FinFETs with different gate oxides in terms of Double Hetero Gate Oxide (DHGO), Triple Hetero Gate Oxide (THGO) and Quadruple Hetero Gate Oxide (QHGO) to produce lower leakage current, higher Ion/Ioff ratio, higher gm/gd and also lower Drain Induced Barrier Lowering (DIBL) than those of a conventional triple-gate FinFET. Among all of them, the best results are explored for the DHGO FinFET structure. In DHGO FinFET structure, a high-κ dielectric (κ = 22) is used on the top oxide to increase the gate control and a low-k dielectric (κ = 3.9) is used over silicon body owing to the compatibility of lattice constant of SiO2 and silicon. Mode-space drift-diffusion (DD_MS) model coupled with Schrodinger equation has been utilized in order to analyze the proposed and conventional structures in three dimensional (3D) simulation domain. Interestingly, by decreasing the thickness of the oxide layer and increasing the permittivity coefficient, the leakage current decreases, thus increasing the Ion/Ioff ratio. The DHGO FinFET structure is found to exhibit higher Ion/Ioff, lower DIBL and higher gm/gd ratio, thus proving performance superiority over the other conventional junctionless FinFET and also MOSFETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call