Abstract

We report about the remarkable changes in the thermophysical properties of the heat transfer fluid used in concentrating solar power plants with parabolic-trough collectors (Dowtherm A, a mixture of diphenyl oxide and biphenyl) by addition of Au nanoplates in mass fractions around 10−2 wt%. The resulting nanofluids are stable for weeks, and their enhanced physical properties make them good candidates for the application. Particularly, with 4.8·10−2 wt% of Au nanoplates, specific heat increases by 12.0 ± 1.2 % at 523 K and thermal conductivity increases by 24.9 ± 6.1 % at 373 K, with no measurable changes in density or dynamic viscosity. This set of physical properties allows to make a realistic estimation of the performance of a prototypical concentrating solar power plant using these nanofluids for solar-to-thermal energy conversion. We determine, using computational cost-free numerical models available in literature, that the performance of a concentrating solar power plant could increase up to 35.1 %, compared to the predicted 24.7 % with the conventional heat transfer fluid, with neither rheological penalties nor economically prohibitive structural changes. The findings here reported may contribute to encourage the application of heat transfer nanofluids in order to improve the efficiency of concentrating solar power plants, and to consolidate a working scheme that positively promotes the transition from laboratory scale to industrial scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.