Abstract

BackgroundIn the early stages of plant breeding programs high-quality phenotypes are still a constraint to improve genetic gain. New field-based high-throughput phenotyping (HTP) platforms have the capacity to rapidly assess thousands of plots in a field with high spatial and temporal resolution, with the potential to measure secondary traits correlated to yield throughout the growing season. These secondary traits may be key to select more time and most efficiently soybean lines with high yield potential. Soybean average canopy coverage (ACC), measured by unmanned aerial systems (UAS), is highly heritable, with a high genetic correlation with yield. The objective of this study was to compare the direct selection for yield with indirect selection using ACC and using ACC as a covariate in the yield prediction model (Yield|ACC) in early stages of soybean breeding. In 2015 and 2016 we grew progeny rows (PR) and collected yield and days to maturity (R8) in a typical way and canopy coverage using a UAS carrying an RGB camera. The best soybean lines were then selected with three parameters, Yield, ACC and Yield|ACC, and advanced to preliminary yield trials (PYT).ResultsWe found that for the PYT in 2016, after adjusting yield for R8, there was no significant difference among the mean performances of the lines selected based on ACC and Yield. In the PYT in 2017 we found that the highest yield mean was from the lines directly selected for yield, but it may be due to environmental constraints in the canopy growth. Our results indicated that PR selection using Yield|ACC selected the most top-ranking lines in advanced yield trials.ConclusionsOur findings emphasize the value of aerial HTP platforms for early stages of plant breeding. Though ACC selection did not result in the best performance lines in the second year of selections, our results indicate that ACC has a role in the effective selection of high-yielding soybean lines.

Highlights

  • In the early stages of plant breeding programs high-quality phenotypes are still a constraint to improve genetic gain

  • We have shown that the efficiency of selecting high yielding soybean lines can be improved by taking advantage of an high-throughput phenotyping (HTP) trait

  • Field HTP must be integrated into a wider context in breeding programs than trait estimation, evaluation of platforms, and genetic association studies

Read more

Summary

Introduction

In the early stages of plant breeding programs high-quality phenotypes are still a constraint to improve genetic gain. New field-based high-throughput phenotyping (HTP) platforms have the capacity to rapidly assess thousands of plots in a field with high spatial and temporal resolution, with the potential to measure secondary traits correlated to yield throughout the growing season. These secondary traits may be key to select more time and most efficiently soybean lines with high yield potential. Genetic gain in a crop breeding program can be defined as G = h2iσp L , where h2 is the narrow-sense heritability, i is the selection intensity, σp is the phenotypic standard deviation and L is the breeding cycle time or generation [1]. Indirect selection may be preferable when the secondary trait is easier or less expensive to measure than yield and if it can be selected out-of-season or in earlier developmental stages or generations, accelerating decision-making steps, and decreasing the breeding cycle [16, 17]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call