Abstract

There is currently a large interest in probabilistic logical models. A popular algorithm for approximate probabilistic inference with such models is Gibbs sampling. From a computational perspective, Gibbs sampling boils down to repeatedly executing certain queries on a knowledge base composed of a static part and a dynamic part. The larger the static part, the more redundancy there is in these repeated calls. This is problematic since inefficient Gibbs sampling yields poor approximations. We show how to apply program specialization to make Gibbs sampling more efficient. Concretely, we develop an algorithm that specializes the definitions of the query-predicates with respect to the static part of the knowledge base. In experiments on real-world benchmarks we obtain speedups of up to an order of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.