Abstract

PurposeAdditive manufacturing technology significantly simplifies the production of complex three-dimensional (3 D) parts directly from the computer-aided design (CAD) model. Although additive manufacturing (AM) processes have unexampled flexibility, they still have restrictions inhibiting engineers to easily generate some specific geometric shapes, easily. Some of these problems pertain to the consumption of materials as supports, the inferior surface finish of some surfaces with certain angles, etc. One of the approaches to overcome these problems is designing by segmentation.Design/methodology/approachThe proposed methodology consists of two steps: (1) segmentation of the 3 D model and (2) exploring the best orientation for each segment. In the first step, engineers consider the possible number of segments and the connection method of segments. In this paper, a series of segments, called a segmentation pattern (SP), is obtained by the recognition of features and separating them automatically (or manually when needed) with one or more appropriate planes. In the second step, the best fabrication orientation should be chosen. The criteria for choosing the best SP and OPs are minimizing the support volume, building time (directly affected by segments’ height in layer-wise AM processes) and surface roughness. Both steps are performed automatically (or manually when needed) by the algorithm created based on principles of particle swarm optimization (PSO) algorithm using Visual C#.FindingsExperimental tests show that the segmentation design improves AM processes from the aspects of building time, material consumption and the surface quality. Segmentation design empowers users of AM technologies to reduce consumption of material by decreasing the support structures, to decrease the time of building by lowering the segments height and to decrease the surface roughness.Originality/valueThis paper presents an original approach in efficiency improvement of AM technologies, thus bringing the AM one step closer to maturity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call