Abstract

Most of the loads in the distribution system are inductive loads, due to the nature of household loads, most of which are reactive power consuming motors. These loads have a low power factor and cause voltage drop and increased power losses in the wires. The system most affected by power loss and voltage drop is the low-voltage distribution system of 0.4 kV, due to the large current that passes in this system. In this research, a simulation of a standard low-voltage radial distribution system (IEEE 30 Bus System) was carried out in the Power World Simulator Program in order to evaluate and improve the efficiency of the distribution system by manually installing capacitors at each consumer to correct the power factor to reduce voltage drop and electrical power losses in wires. The system simulation was conducted at constant loads, and the ineffective power was compensated for by its equivalent manually, by adding capacitors to keep the power factor close to Unity. The research aims to study the effect of power factor correction for each consumer on the overall distribution system efficiency, to be a basis for designing an automatic power factor correction unit that can be installed in homes, commercial buildings, and small factories. The simulation results were promising in terms of improving the overall system efficiency and reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.