Abstract
Organic and inorganic lead halide perovskites due to their low weight, high efficiency, and low cost, have played an important role in photovoltaic (PV) technology during the last decade. As an absorber layer, methylammonium lead bromide-based perovskite cells have a bandgap of 2.3 eV, which makes them compatible for tandem structures with CdTe solar cells with an energy gap of 1.45 eV. A low-cost device configuration model for the perovskite-CdTe tandem solar cell has been developed utilizing wx-AMPS simulation in this research. The single-junction perovskite solar cell has an efficiency of 21.8% and the single junction CdTe solar cell has an efficiency of 25.71%. The thickness and dopant concentration of absorber layers, i.e. perovskite and CdTe, the hole transport material (HTM), electron transport material (ETM), and the device temperature all have a role in influencing the solar cell output parameters and performance. The ideal CdTe and perovskite thicknesses were determined to be 4 µm and 6 µm, respectively at which the best efficiency was found. With an open-circuit voltage of 0.9997 V, a short circuit current of 33.91 mA/cm2, and a fill factor of 87 %, the efficiency of the FTO(TCO)/TiO2(ETL)/CH3NH3PbBr3/Cu <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> O(HTL)/CdS(Tunnel Junction),/CdS (Window layer)/CdTe tandem solar cell is 29.5%. This structure has been designed to improve the stability of the solar cell when the temperature rises, which is important for the commercial viability of perovskite solar cells (PSC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.