Abstract

Passivating the electronic defects of metal halide perovskite is regarded as an effective way to improve the power conversion efficiency (PCE) of perovskite solar cells (PVSCs). Here, a series of dipeptide molecules with abundant ─C═O, ─O─ and ─NH functional groups as defects passivators for perovskite films are employed. These dipeptide molecules are utilized to treat the surface of prototype methyl ammonium lead iodide (MAPbI3) films and the corresponding PVSCs exhibit enhanced photovoltaic performance and ambient stability, which can be ascribed to: 1) the ─C═O and ─O─ can interact with the undercoordinated Pb2+ ions and the ─NH groups can form hydrogen bonds with the I- ions, passivating the defects in perovskite film and reducing charge recombination in PVSCs; 2) the long alkyl chain of dipeptide molecules increases the hydrophobicity of the perovskite surface and thus enhance the stability of PVSCs. The passivated MAPbI3-based PVSCs exhibit a champion PCE of 20.3% and retain 60% of the initial PCE after 1000h. It is believed that the defects passivation engineering using polypeptide moleculars can be applied in other perovskite compositions for high device efficiency and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.