Abstract

ContextTest suite reduction is the problem of creating and executing a set of test cases that are smaller in size but equivalent in effectiveness to an original test suite. However, reduced suites can still be large and executing all the tests in a reduced test suite can be time consuming. ObjectiveWe propose ordering the tests in a reduced suite to increase its rate of fault detection. The ordered reduced test suite can be executed in time constrained situations, where, even if test execution is stopped early, the best test cases from the reduced suite will already be executed. MethodIn this paper, we present several approaches to order reduced test suites using experimentally verified prioritization criteria for the domain of web applications. We conduct an empirical study with three subject applications and user-session-based test cases to demonstrate how ordered reduced test suites often make a practical contribution. To enable comparison between test suites of different sizes, we develop Mod_APFD_C, a modification of the traditional prioritization effectiveness measure. ResultsWe find that by ordering the reduced suites, we create test suites that are more effective than unordered reduced suites. In each of our subject applications, there is at least one ordered reduced suite that outperforms the best unordered reduced suite and the best prioritized original suite. ConclusionsOur results show that when a tester does not have enough time to execute the entire reduced suite, executing an ordered reduced suite often improves the rate of fault detection. By coupling the underlying system’s characteristics with observations from our study on the criteria that produce the best ordered reduced suites, a tester can order their reduced test suites to obtain increased testing effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.