Abstract

The possibility of improving the performance of deep well solar pumping systems by using centrifugal pumps with variable rotational speed and modular number of working stages (i.e. Divided Shaft Pump, DSP) was investigated and compared with traditional systems equipped with pumps having a fixed number of stages (i.e Standard Centrifugal Pump, SCP). Starting from commercially available pumps with a given head–mass flow characteristic, a visual simulation tool for the evaluation of the modified DSP pump performance and costs was developed. In principle, it would be possible to use the desired number of modular stages, thus achieving the highest efficiency of the system for all conditions of radiation. In practice, in order to reduce the DSP pump costs to an affordable level, only one shaft breakpoint is suggested (and then two modular blocks of stages), whose optimised position is determined by the simulation program on the basis of insolation curve during the daylight and required head and shaft speed. Referring to a 30 m 2 PV system (about 3000 W peak power) and to a well depth of 100 m and considering a commercial 46-stage submersible pump, it was found that a breakpoint at the 31st impeller produced an increase close to 9% of the yearly pumped water yield with respect to a conventional, non-modular pump. For the above system, assuming that the cost of a modified modular pump is 1.5 times higher than that of a standard pump, the payback time varies from 0.5 to 2.5 years when the water sale price ranges between 1.1 and 0.6 €/m 3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call