Abstract
Steelmaking is responsible for 7% of the global net emissions of carbon dioxide and heavily reducing emissions from currently dominating steelmaking processes is difficult and costly. Recently, new steelmaking processes based on the reduction of iron ore with hydrogen (H2) produced via water electrolysis have been suggested. If the electricity input to such processes is fossil-free, near-zero carbon dioxide emissions steelmaking is achievable. However, the high electricity demand of electrolysis is a significant implementation barrier. A H2 storage may alleviate this via allowing a larger share of H2 to be produced at low electricity prices. However, accurately forecasting electricity market dynamics is challenging. This increases the risk of investment in a H2 storage. Here we evaluate a novel methanol-based H2 storage concept for H2-based steelmaking that also allows for the co-production of methanol. During electricity price peaks, the methanol can be reformed to produce H2 for the steelmaking process. During prolonged periods of low electricity prices, excess methanol can be produced and sold off, thus improving the prospects of storage profitability. We use historical electricity prices and a process model to evaluate methanol and fossil-free steel co-production schemes. Methanol co-production is found to have the potential to improve the economics of H2 supply to a fossil-free steelmaking process by up to an average of 0.40 €/kg H2 across considered scenarios, equivalent to a 25.0% reduction in H2 production electricity costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.