Abstract
Naproxen is a typical and well-known analgesic classified as non-steroidal anti-inflammatory drug (NSAID) and is commercialized as tablets or liquid-filled capsules. Naproxen is typically used asa sodium salt because of its better processability compared to Naproxen free acid. This entails hygroscopicity and gives rise to the existence of four different hydrates, which show polymorphic and pseudopolymorphic properties. Solid dosage forms containing Naproxen Sodium often have to be processed in an applicable dosage form by granulation and tablet compression. During granulation, Naproxen Sodium will be in contact with water and is exposed to the drop and rise in temperature and to mechanical stress. The result could be a mixture of different hydrates of Naproxen Sodium.This study showed that a modified designed fluid bed granulation was not affected by differences in the mixing ratio of hydrates when using different water contents after spraying and at the end with the finished granules. Here, X-ray diffraction combined with Rietveld refinement was used to analyze the ratio of the hydrates and its identity. All granulation batches showed a large amount of Naproxen Sodium Monohydrate (>87%) and no differences could be observed during tablet compression. Quantities of other hydrates were negligibly small.Furthermore, this study also demonstrated the influence of tablet compression by transforming the hydrates of the granules. In addition to Naproxen Sodium Monohydrate, a large quantity of amorphous structures has also been found. Rietveld evaluation combined with the preliminary studies of the raw hydrates provided conclusions on the drug release of the tablets containing hydrates of Naproxen Sodium which were influenced by tablet compression.Fast drug release was obtained when a maximum water content of about 21% was used after spraying during granulation, independently of the final water content of the finished granules. A maximum water content of less than 21% after spraying yielded a high quantity of amorphous components after tablet compression and thus worsened the drug release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.