Abstract

Endo-1,4-β-xylanase is one of the most important enzymes employed in biorefineries for obtaining fermentable sugars from hemicellulosic components. Herein, we aimed to improve the catalytic performance of Bacillus circulans xylanase (Bcx) using a structure-guided rational design. A systematic analysis of flexible motions revealed that the R49 component of Bcx (i) constrains the global conformational changes essential for substrate binding and (ii) is involved in modulating flexible motion. Site-saturated mutagenesis of the R49 residue led to the engineering of the active mutants with the trade-off between flexibility and rigidity. The most active mutant R49N improved the catalytic performance, including its catalytic efficiency (7.51-fold), conformational stability (0.7 °C improvement), and production of xylose oligomers (2.18-fold higher xylobiose and 1.72-fold higher xylotriose). The results discussed herein can be applied to enhance the catalytic performance of industrially important enzymes by controlling flexibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call