Abstract

A life cycle assessment (LCA) was carried out on three separate drinking water production options—a groundwater treatment plant (GWTP), surface water treatment plant and seawater desalination plant (electrodialysis) in order to calculate the carbon footprint associated with each process and to identify the areas of production with high levels of GHG emissions in order to develop strategies for reducing their carbon footprint. The results obtained from the LCA show that the highest GHG emissions are from the seawater desalination plant via electrodialysis (ED) where the GHG emissions were 2.46 kg CO2 equivalent (eq). By comparison, the GWTP has the lowest carbon footprint emitting some 0.38 kg CO2 eq for water delivery to households. The GHG emission contribution of electricity generation for the GWTP, surface water treatment plant and seawater ED plants was 95, 82 and 98 %, respectively. Furthermore, the GHG emissions associated with this production process can be further reduced by including renewable energy power generation in its operations.

Highlights

  • In Western Australia (WA), the water flows were dropped significantly during 1997–2005 from an annual average of 161GL (1974–1997) to 115GL per year (Perth Seawater Desalination Plant 2006)

  • While less water will come from dams and more from desalination to secure groundwater sources in the future, the capacities of three currently used water supply options, including Wanneroo groundwater treatment plant (GWTP), surface water treatment plant and seawater desalination plant, need to be increased due to this decreasing water flows and increasing demand on drinking water supply in Western Australia

  • In addition to existing GWTP and surface water treatment plant, the current paper considers the estimation of GHG emissions from another promising alternative water supply option which is a desalination plant via electrodialysis (ED)

Read more

Summary

Introduction

In Western Australia (WA), the water flows were dropped significantly during 1997–2005 from an annual average of 161GL (1974–1997) to 115GL per year (Perth Seawater Desalination Plant 2006). This is mainly due to the low rainfall and the climate change initiating the drought. While less water will come from dams and more from desalination to secure groundwater sources in the future, the capacities of three currently used water supply options, including Wanneroo groundwater treatment plant (GWTP), surface water treatment plant and seawater desalination plant, need to be increased due to this decreasing water flows and increasing demand on drinking water supply in Western Australia

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call