Abstract
The use of Type la supernovae (SNe Ia) as cosmological standard candles is a key to solving the mystery of dark energy. Improving the calibration of SNe Ia increases their power as cosmological standard candles. We find tentative evidence for a correlation between the late-time light-curve slope and the peak luminosity of SNe Ia in the B band; brighter SNe Ia seem to have shallower light-curve slopes between 100 and 150 d from maximum light. Using a Markov Chain Monte Carlo (MCMC) analysis in calibrating SNe Ia, we are able to simultaneously take into consideration the effect of dust extinction, the luminosity and light-curve width correlation (parametrized by Δm 15 ), and the luminosity and late-time light-curve slope correlation. For the available sample of 11 SNe Ia with well-measured late-time light curves, we find that correcting for the correlation between luminosity and late-time light-curve slope of the SNe Ia leads to an intrinsic dispersion of 0.12 mag in the Hubble diagram. Our results have significant implications for future supernova surveys aimed to illuminate the nature of dark energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.