Abstract
New Zn(II)-curcumin based heteroleptic complexes (1-5) have been synthesized and fully characterized, with the aim to improve the bioactivity of the precursor derivative [(bpy-9)Zn(curc)Cl] (A), a potentially intercalating antitumor agent recently reported. Some structural changes have been made starting from the reference complex A, in order to introduce new functionalities, such as electrostatic and/or covalent interactions. In particular, keeping the same N,N chelating ligand, namely bpy-9, two completely different Zn(II) species have been obtained: a tetracoordinated Zn(II) cation with tetrafluoroborate as counterion (1) and a dimeric neutral complex in which the sulfate anion acts as a bridging group through two Zn(II) centres (2). Moreover, by changing the N,N chelating unit, [(L(n))Zn(curc)Cl] complexes (3-5), in which the Zn(II) ion shows the same pentacoordination seen in the precursor complex A, have been obtained. The antitumour activity of all new Zn(II) complexes was tested in vitro against the human neuroblastoma cell line SH-SY5Y in a biohybrid membrane system and the results indicate that all species exhibit strong cytotoxic activity. In particular the ionic tetrafluoroborate Zn(II) complex, 1, and the neutral phenanthroline based Zn(II) derivative, 4, show the strongest growth inhibition, being even more effective than the model complex A. Both complexes have a dose-dependent anti-proliferative effect on cells as demonstrated by the decrease of viability and the increase of Annexin V and PI-positive cells with the increase of their concentration. Cells treated with complexes 1 and 4 undergo apoptosis that involves the activation of JNK, caspase 3 and MMP changes. Finally, complex 1 is more effective in the induction of caspase-3 activation demonstrating its ability to trigger the execution-phase of cell apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.