Abstract

Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.

Highlights

  • IntroductionGround penetrating radar is geophysical tool with an active source which uses high-frequency electromagnetic waves to study near surface layers

  • Geophysical methods are conducted to study characteristics of geological structures, distinguish their layers, find the elastic coefficients of each layer, evaluate dynamic parameters of surface layers, investigate the behavior of surface layers during earthquakes in order to design construction, and locate reservoirs such as hydrocarbons, metal mines, and underground water.Ground penetrating radar is geophysical tool with an active source which uses high-frequency electromagnetic waves to study near surface layers

  • The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise

Read more

Summary

Introduction

Ground penetrating radar is geophysical tool with an active source which uses high-frequency electromagnetic waves to study near surface layers. It was first used in 1956 and has been increasingly used ever since 1970. GPR method beams very high frequency (12.5 - 2300 MHz) electromagnetic waves into the Earth which are reflected upon contact with various underground materials and relatively distinct boundaries therein. Such radar reflections are created as a result of the differences between electrical conductivity (dielectric constant) among the material through which the electromagnetic waves are passing. The electromagnetic waves from the GPR pass through the material with low electrical conductivity, but are strongly absorbed by conductive components such as clay, organic acidic soils and the material saturated with salt water [1]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call