Abstract
Functionalization can promote the uptake of nanoparticles into cancer cells via receptor-mediated endocytosis, enabling them to exert their therapeutic effects. In this paper, epigallocatechin gallate (EGCG), which has a high binding affinity to 67 kDa laminin receptor (67LR) overexpressed in HCC cells, was employed in the present study to functionalized ruthenium nanoparticles (RuNPs) loaded with luminescent ruthenium complexes to achieve antiliver cancer efficacy. [Ru(bpy)2(4-B)] (ClO4)2·2H2O (RuBB)-loaded EGCG-RuNPs (bpy = 2,2'-bipyridine) showed small particle size with narrow distribution, better stability, and high selectivity between liver cancer and normal cells. The internalization of RuBB-loaded EGCG-RuNPs was inhibited by 67LR-blocking antibody or laminin, suggesting that 67LR-mediated endocytosis played an important role in the uptake into HCC cells. Moreover, transmission electron microscopy and confocal microscopic images showed that RuBB-loaded EGCG-RuNPs accumulated in the cytoplasm of SMMC-7721 cells. Furthermore, our results indicated that the EGCG-functionalized nanoparticles displayed enhanced anticancer effects in a target-specific manner. Concentrations of RuBB-loaded EGCG-RuNPs, nontoxic in normal L-02 cells, showed direct reactive oxygen species-dependent cytotoxic, pro-apoptotic, and anti-invasive effects in SMMC-7721 cells. Furthermore, in vivo animal study demonstrated that RuBB-loaded EGCG-RuNPs possessed high antitumor efficacy on tumor-bearing nude mice. It is encouraging to conclude that the multifunctional RuNPs may form the basis of new strategies on the treatment of liver cancer and other malignancies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.