Abstract

The change from producing high strength low alloy (HSLA) steel sheet by conventional thick slab casting to producing it by direct charged thin slab casting causes a major change in the evolution of the precipitation. A key area of interest is the composition of the sub- 10 nm precipitates used to produce dispersion hardening. Carbon extraction replicas are frequently used to study precipitates in steels and other metals. When used with annular dark field imaging, this technique gives high contrast images of the precipitates while the thin carbon film adds little background or additional characteristic signals to either electron energy loss spectra or energy dispersive X-ray spectra. The method has the additional major advantage of removing the ferromagnetic matrix when studying HSLA steels. However, when the precipitates contain carbon, the C K-edge is dominated by the contribution from the amorphous carbon film. A plasma cleaner can be used to thin this carbon film to ∼0.5 nm or less and then the contribution from the carbon in the precipitate can be separated from that in the carbon film using the electron energy loss near edge structure. A similar approach can be taken to separate the oxygen content of the precipitate from that of oxides formed from low-level impurities in the amorphous carbon during the plasma thinning process. In most cases, the precipitate studied here contained little or no oxygen even for the smallest sizes examined (∼4 nm ). The precipitates contain mainly nitrogen with little carbon. For some compositions, the precipitates are clearly sub-stoichiometric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.