Abstract

Substrate spectrum assay exhibited that PvEH1, which is an epoxide hydrolase from P. vulgaris, had the highest specific activity and enantiomeric ratio (E) for racemic o-methylphenyl glycidyl ether (rac-1) among tested aryl glycidyl ethers (1–5). To produce (R)-1 via kinetic resolution of rac-1 efficiently, the catalytic properties of PvEH1 were further improved on the basis of rational design. Firstly, the seven single-site variants of PvEH1-encoding gene (pveh1) were PCR-amplified as designed, and expressed in E. coli BL21(DE3). Among all expressed single-site mutants, PvEH1L105I and PvEH1V106I had the highest specific activities of 17.6 and 16.4 U/mg protein, respectively, while PvEH1L196D had an enhanced E value of 9.2. Secondly, to combine their respective merits, one triple-site variant, pveh1L105I/V106I/L196D, was also amplified, and expressed. The specific activity, E value, and catalytic efficiency of PvEH1L105I/V106I/L196D were 23.1 U/mg, 10.9, and 6.65 mM−1 s−1, respectively, which were 2.0-, 1.8- and 2.4-fold higher than those of wild-type PvEH1. The source of PvEH1L105I/V106I/L196D with enhanced E value for rac-1 was preliminarily analyzed by molecular docking simulation. Finally, the scale-up kinetic resolution of 100 mM rac-1 was conducted using 5 mg wet cells/mL E. coli/pveh1L105I/V106I/L196D at 25 °C for 1.5 h, producing (R)-1 with 95.0% ees, 32.1% yield and 3.52 g/L/h space-time yield.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.