Abstract
In this paper, we study the problem of retrieving a ranked list of top-N items to a target user in recommender systems. We first develop a novel preference model by distinguishing different rating patterns of users, and then apply it to existing collaborative filtering (CF) algorithms. Our preference model, which is inspired by a voting method, is well-suited for representing qualitative user preferences. In particular, it can be easily implemented with less than 100 lines of codes on top of existing CF algorithms such as user-based, item-based, and matrix-factorization-based algorithms. When our preference model is combined to three kinds of CF algorithms, experimental results demonstrate that the preference model can improve the accuracy of all existing CF algorithms such as ATOP and NDCG@25 by 3–24% and 6–98%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.