Abstract
ABSTRACT Symplectic integrators are a foundation to the study of dynamical N-body phenomena, at scales ranging from planetary to cosmological. These integrators preserve the Poincaré invariants of Hamiltonian dynamics. The N-body Hamiltonian has another, perhaps overlooked, symmetry: it is smooth, or, in other words, it has infinite differentiability class order (DCO) for particle separations greater than 0. Popular symplectic integrators, such as hybrid methods or block adaptive stepping methods do not come from smooth Hamiltonians and it is perhaps unclear whether they should. We investigate the importance of this symmetry by considering hybrid integrators, whose DCO can be tuned easily. Hybrid methods are smooth, except at a finite number of phase space points. We study chaotic planetary orbits in a test considered by Wisdom. We find that increasing smoothness, at negligible extra computational cost in particular tests, improves the Jacobi constant error of the orbits by about 5 orders of magnitude in long-term simulations. The results from this work suggest that smoothness of the N-body Hamiltonian is a property worth preserving in simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.