Abstract

BODIPY and aza-BODIPY dyes constitute two key families of organic dyes with applications in both materials science and biology. Previous attempts aiming to obtain accurate theoretical estimates of their optical properties, and in particular of their 0-0 energies, have failed. Here, using time-dependent density functional theory (TD-DFT), configuration interaction singles with a double correction [CIS(D)], and its scaled-opposite-spin variant [SOS-CIS(D)], we have determined the 0-0 energies as well as the vibronic shapes of both the absorption and emission bands of a large set of fluoroborates. Indeed, we have selected 47 BODIPY and 4 aza-BODIPY dyes presenting diverse chemical structures. TD-DFT yields a rather large mean signed error between the experimental and theoretical 0-0 energies with a systematic overshooting of the transition energies (by ca. 0.4 eV). This error is reduced to ca. 0.2 [0.1] eV when the TD-DFT 0-0 energies are corrected with vertical CIS(D) [SOS-CIS(D)] energies. For BODIPY and aza-BODIPY dyes, both CIS(D) and SOS-CIS(D) clearly outperform TD-DFT. The present computational protocol allows accurate data to be obtained for the most relevant properties, that is, 0-0 energies and optical band shapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.