Abstract

Methods for solving index 3 DAEs based on BDFs suffer a loss of accuracy when there is a change of step size or a change of order of the method. A layer of nonuniform convergence is observed in these cases, andO(1) errors may appear in the algebraic variables. From the viewpoint of error control, it is beneficial to allow smooth changes of step size, and since most codes based on BDFs are of variable order, it is also of interest to avoid the inaccuracies caused by a change of order of the method. In the case of BDFs applied to index 3 DAEs in semi-explicit form, we present algorithms that correct toO(h) the inaccurate approximations to the algebraic variables when there are changes of step size in the backward Euler method. These algorithms can be included in an existing code at a very small cost. We have also described how to obtain formulas that correct theO(1) errors in the algebraic variables appearing after a change of order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.