Abstract

The use of ternary polymer solar cells (PSCs) is a promising strategy to enhance photovoltaic performance while improving the fill factor (FF) of a device, but is still a challenge due to the complicated morphology. Herein, ternary PSCs are fabricated via adding the conjugated small molecule p-DTS(FBTTh2)2 into a well-known blended film, PTB7-Th:IEICO-4F. The ternary blend morphology and device characterization reveal that the addition of p-DTS(FBTTh2)2 can improve crystallinity and optimize morphology, leading to the FF of the optimized device increasing to 73.69%. In combination with the advantages of an ultra-narrow bandgap material, IEICO-4F, with a broad optical absorption spectrum, the optimized ternary solar cell exhibits a high short-circuit current–density (JSC) of 25.22 mA cm−2. The best power conversion efficiency (PCE) is 12.84% for this optimized ternary device with 10 wt% p-DTS(FBTTh2)2 in the donors. This work indicates that incorporating a small molecule with high crystallinity into host binary non-fullerene PSCs would give an active layer with high crystallinity, thus greatly enhancing the FFs and PCEs of PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.