Abstract

Stable cavitation (SC) has shown great potential for novel therapeutic applications. The spatiotemporal distribution of the SC activity of microbubbles circulating in a target region is not only correlated with the uniformity of treatment, but also with some undesirable effects. Therefore, it is important to achieve controllable and desirable SC activity in target regions for improved therapeutic efficiency and biosafety. This study proposes a closed-loop feedback controller based on pulse length (PL) regulation to improve the temporal stability of SC activity. Microbubbles circulating in a physiological flowing phantom were exposed to a 1 MHz focused transducer. The SC signals produced were initially received by another 7.5 MHz plane transducer, followed by high-speed signal acquisition and real-time processing. Based on the real-time-measured SC intensity excited by the current acoustic pulse, the proposed closed-loop feedback controller used three proportional coefficients to regulate the peak negative pressure (PNP) and PL of the next acoustic pulse during the acceleration and stable stages, respectively. The results show that the rise time and the temporal stability of the SC intensity of the microbubbles circulating in these two stages were improved significantly by the optimized proportional coefficients used in the proposed controller. Importantly, when compared with the traditional closed-loop feedback controller based on PNP regulation, the proposed closed-loop feedback controller based on PL regulation reduced the probability of a transition between stable and inertial cavitation, thus avoiding the risk of disadvantageous bioeffects in practical applications. These results demonstrate the effectiveness of the proposed PL-based closed-loop feedback controller and provide a feasible strategy for realization of controllable cavitation activity in applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call