Abstract
Symbolic regression offers a promising avenue for describing the structure-property relationships of materials with explicit mathematical expressions, yet it meets challenges when the key variables are unclear because of the high complexity of the problems. In this work, we propose to solve the difficulty by automatically searching for important variables from a large pool of input features. A new algorithm that integrates symbolic regression with iterative variable selection (VS) was designed for optimization of the model with a large amount of input features. Using the recent method SISSO for symbolic regression and random search for variable selection, we show that the VS-assisted SISSO (VS-SISSO) can effectively manage even hundreds of input features that the SISSO alone was computationally hindered, and it fastly converges to (near) optimal solutions when the model complexity is not high. The efficiency of this approach for improving the accuracy of symbolic regression in materials science was demonstrated in the two showcase applications of learning approximate equations for the band gap of inorganic halide perovskites and the stability of single-atom alloy catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.