Abstract

In this article, an innovative laser-based inline-capable coating process for the production of highly wear resistant coatings is presented. A zirconia-based sol–gel material is applied onto hardened and tempered steel substrates by a PipeJet-based printing process and spin-coating. Green films with a thickness of 100–200 nm are produced. Drying, gelation, and transformation of the green films into mechanically resistant wear protection coatings is done by laser treatments. Due to the precise temporal and spatial controllability of the diode laser radiation it is possible to generate temperatures >1000°C, required for the crystallization of the films, as well as to minimize the thermal load of the substrate. The formation of a tetragonal ZrO2 phase within the films is achieved by the laser treatment. According to finite-element calculations the temperature penetration depth of temperatures >150°C (thermal stability of the substrate around 180°C) is reduced to 20–100 μm by using pulsed diode laser radiation. The evolution of the layer thickness as well as chemical and morphological coating properties is investigated by white light interferometry, Fourier transform infrared spectroscopy, and grazing-incidence XRD measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.