Abstract
We report the synthesis and characterization of MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> made from nano-boron and doped with graphene in the following mole percentages, x = 0, 3.0 and 12.0. The effect of graphene doping on the normal state resistivity (ρ), superconducting transition temperature (T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ), irreversibility and upper critical fields (H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">irr</sub> and H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c2</sub> ), and critical current density (J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> ), as well as the pinning force (F <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> ) were evaluated. We found that the graphene doping has a positive impact on the above mentioned properties. In the case of the optimally doped (x = 3.0%) sample, the critical current density at 5 K corresponds to 1.4 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> for 2 T field, whereas the undoped sample showed 9.6 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> for the same field, i.e., 1.5 times improvement. Furthermore, the optimally doped sample showed a J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> of nearly 1 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 5 K, 8 T, which is a significantly high value. The upper critical field has been enhanced to 13 T at 20 K for the optimal doping level. The flux pinning behavior has been evaluated from the curve of flux pinning force against applied magnetic field, and it reveals that the maximum pinning has been improved by nearly 1.2 times at 20 K, due to the graphene doping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.