Abstract

In recent years, Superconducting Nanowire Single-Photon Detectors (SNSPDs) have obtained tremendous attention as a possible key technology for photonic quantum processing and faint light detection. Here, we present our recent progress on engineering of the properties of NbTiN SNSPDs fabricated on various substrates measured. We discuss approaches to simultaneously improve the most important figures of merit (DCR, dead time, timing jitter, efficiency) as well as efficient characterization methods. Specifically, for the latter we investigate the impact of the substrate material on the performance parameters as well as the fundamental interrelation of the resulting voltage pulse properties, such as pulse height, rise time and timing jitter, and their dependence on the applied bias current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.