Abstract
AbstractSugarcane is a proven biofuel feedstock and accounts for about 40% of the biofuel production worldwide. It has a more favorable energy input/output ratio than that of corn, the other major biofuel feedstock. The rich resource of genetic diversity and the plasticity of autopolyploid genomes offer a wealth of opportunities for the application of genomics and technologies to address fundamental questions in sugarcane towards maximizing biomass production. In a workshop on sugarcane engineering held at Rutgers University, we identified research areas and emerging technologies that could have significant impact on sugarcane improvement. Traditional plant physiological studies and standardized phenotypic characterization of sugarcane are essential for dissecting the developmental processes and patterns of gene expression in this complex polyploid species. Breeder friendly DNA markers associated with target traits will enhance selection efficiency and shorten the long breeding cycles. Integration of cold tolerance from Saccharum spontaneum and Miscanthus has the potential to expand the geographical range of sugarcane production from tropical and subtropical regions to temperate zones. The Flex‐stock and mix‐stock concepts could be solutions for sustaining local biorefineries where no single biofuel feedstock could provide consistent year‐round supplies. The ever increasing capacities of genomics and biotechnologies pave the way for fully exploring these potentials to optimize sugarcane for biofuel production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.