Abstract

The idea of style similarity metrics has been recently developed for various media types such as 2D clip art and 3D shapes. We explore this style metric problem and improve existing style similarity metrics of 3D shapes in four novel ways. First, we consider the color and texture of 3D shapes which are important properties that have not been previously considered. Second, we explore the effect of clustering a dataset of 3D models by comparing between style metrics for individual object types and style metrics that combine clusters of object types. Third, we explore the idea of userguided learning for this problem. Fourth, we introduce an iterative approach that can learn a metric from a general set of 3D models. We demonstrate these contributions with various classes of 3D shapes and with applications such as style-based similarity search and scene composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.