Abstract

The thrombin binding aptamer (TBA) is a 15-mer DNA oligonucleotide (5'-GGT TGG TGT GGT TGG-3'), that can form a stable intramolecular antiparallel chair-like G-quadruplex structure. This aptamer shows anticoagulant properties by interacting with one of the two anion binding sites of thrombin, namely the fibrinogen-recognition exosite. Here, we demonstrate that terminal modification of TBA with aromatic fragments such as coumarin, pyrene and perylene diimide (PDI), improves the G-quadruplex stability. The large aromatic surface of these dyes can π-π stack to the G-quadruplex or to each other, thereby stabilizing the aptamer. With respect to the original TBA, monoPDI-functionalized TBA exhibited the most remarkable improvement in melting temperature (ΔTm ≈+18 °C) and displayed enhanced anticoagulant activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call