Abstract
In this paper, we are concerned with the simulation of Gaussian random fields by means of iterative stochastic algorithms, which are compared in terms of rate of convergence. A parametrized class of algorithms, which includes stochastic relaxation (Gibbs sampler), is proposed and its convergence properties are established. A suitable choice for the parameter improves the rate of convergence with respect to stochastic relaxation for special classes of covariance matrices. Some examples and numerical experiments are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Probability in the Engineering and Informational Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.