Abstract

This paper presents a method for improving the disparity values obtained with a stereo camera by applying an iconic Kalman filter and known ego-motion. The improvements are demonstrated in an application of determining the free space in a scene as viewed by a vehicle-mounted camera. Using disparity maps from a stereo camera and known camera motion, the disparity maps are first filtered by an iconic Kalman filter, operating on each pixel individually, thereby reducing variance and increasing the density of the filtered disparity map. Then, a stochastic occupancy grid is calculated from the filtered disparity map, providing a top-down view of the scene where the uncertainty of disparity measurements are taken into account. These occupancy grids are segmented to indicate a maximum depth free of obstacles, enabling the marking of free space in the accompanying intensity image. Even without motion of the camera, the quality of the disparity map is increased significantly. Applications of the intermediate results are discussed, enabling features such as motion detection and quantifying the certainty of the measurements. The evaluation shows significant improvement in disparity variance and disparity map density, and consequently an improvement in the application of marking free space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.