Abstract
This paper presents a wide range of statistical word alignment experiments incorporating morphosyntactic information. By means of parallel corpus transformations according to information of POS-tagging, lemmatization or stemming, we explore which linguistic information helps improve alignment error rates. For this, evaluation against a human word alignment reference is performed, aiming at an improved machine translation training scheme which eventually leads to improved SMT performance. Experiments are carried out in a Spanish–English European Parliament Proceedings parallel corpus, both in a large and a small data track. As expected, improvements due to introducing morphosyntactic information are bigger in case of data scarcity, but significant improvement is also achieved in a large data task, meaning that certain linguistic knowledge is relevant even in situations of large data availability.KeywordsStatistical Machine TranslationComputational LinguisticsAlignment QualityParallel CorpusWord AlignmentThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.