Abstract
Team-science projects have become the “gold standard” for assessing the replicability and variability of key findings in psychological science. However, we believe the typical meta-analytic approach in these projects fails to match the wealth of collected data. Instead, we advocate the use of Bayesian hierarchical modeling for team-science projects, potentially extended in a multiverse analysis. We illustrate this full-scale analysis by applying it to the recently published Many Labs 4 project. This project aimed to replicate the mortality-salience effect—that being reminded of one’s own death strengthens the own cultural identity. In a multiverse analysis, we assess the robustness of the results with varying data-inclusion criteria and prior settings. Bayesian model comparison results largely converge to a common conclusion: The data provide evidence against a mortality-salience effect across the majority of our analyses. We issue general recommendations to facilitate full-scale analyses in team-science projects.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Methods and Practices in Psychological Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.