Abstract

For many decades, attempts have been made to find the universal value of the critical bulk Richardson number (\(Ri_{Bc}\); defined over the entire stable boundary layer). By analyzing an extensive large-eddy simulation database and various published wind-tunnel data, we show that \(Ri_{Bc}\) is not a constant, rather it strongly depends on bulk atmospheric stability. A (qualitatively) similar dependency, based on the well-known resistance laws, was reported by Melgarejo and Deardorff (J Atmos Sci 31:1324–1333, 1974) about forty years ago. To the best of our knowledge, this result has largely been ignored. Based on data analysis, we find that the stability-dependent \(Ri_{Bc}\) estimates boundary-layer height more accurately than the conventional constant \(Ri_{Bc}\) approach. Furthermore, our results indicate that the common practice of setting \(Ri_{Bc}\) as a constant in numerical modelling studies implicitly constrains the bulk stability of the simulated boundary layer. The proposed stability-dependent \(Ri_{Bc}\) does not suffer from such an inappropriate constraint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.