Abstract

BackgroundSqualene is currently used widely in the food, cosmetics, and medicine industries. It could also replace petroleum as a raw material for fuels. Microbial fermentation processes for squalene production have been emerging over recent years. In this study, to study the squalene-producing potential of Escherichia coli (E. coli), we employed several increasing strategies for systematic metabolic engineering. These include the expression of human truncated squalene synthase, the overexpression of rate-limiting enzymes in isoprenoid pathway, the modification of isoprenoid-feeding module and the blocking of menaquinone pathway.ResultsHerein, human truncated squalene synthase was engineered in Escherichia coli to create a squalene-producing bacterial strain. To increase squalene yield, we employed several metabolic engineering strategies. A fivefold squalene titer increase was achieved by expressing rate-limiting enzymes (IDI, DXS, and FPS) involved in the isoprenoid pathway. Pyridine nucleotide transhydrogenase (UdhA) was then expressed to improve the cellular NADPH/NADP+ ratio, resulting in a 59% increase in squalene titer. The Embden–Meyerhof pathway (EMP) was replaced with the Entner–Doudoroff pathway (EDP) and pentose phosphate pathway (PPP) to feed the isoprenoid pathway, along with the overexpression of zwf and pgl genes which encode rate-limiting enzymes in the EDP and PPP, leading to a 104% squalene content increase. Based on the blocking of menaquinone pathway, a further 17.7% increase in squalene content was achieved. Squalene content reached a final 28.5 mg/g DCW and 52.1 mg/L.ConclusionsThis study provided novel strategies for improving squalene yield and demonstrated the potential of producing squalene by E. coli.

Highlights

  • Squalene is currently used widely in the food, cosmetics, and medicine industries

  • Construction of a squalene‐producing E. coli strain In this study, the truncated human squalene synthase was employed for heterologous production of squalene in E. coli based on a previous report [19]

  • High-performance liquid chromatography (HPLC) analysis confirmed that the hsqs expression in strain ECHSQ1 resulted in production of 1.37 mg/g dry cell weight (DCW) or 2.34 Mg per L fermented liquid (mg/L) of squalene (Fig. 3), while it was undetectable in ECHSQ0 (Fig. 3)

Read more

Summary

Results

Human truncated squalene synthase was engineered in Escherichia coli to create a squalene-producing bacterial strain. A fivefold squalene titer increase was achieved by expressing rate-limiting enzymes (IDI, DXS, and FPS) involved in the isoprenoid pathway. Pyridine nucleotide transhydrogenase (UdhA) was expressed to improve the cellular NADPH/ NADP+ ratio, resulting in a 59% increase in squalene titer. The Embden–Meyerhof pathway (EMP) was replaced with the Entner–Doudoroff pathway (EDP) and pentose phosphate pathway (PPP) to feed the isoprenoid pathway, along with the overexpression of zwf and pgl genes which encode rate-limiting enzymes in the EDP and PPP, leading to a 104% squalene content increase. Based on the blocking of menaquinone pathway, a further 17.7% increase in squalene content was achieved. Squalene content reached a final 28.5 mg/g DCW and 52.1 mg/L

Background
Results and discussion
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.