Abstract

A family of heteroleptic spin crossover (SCO) [FeIII(qsal-5-I)(qsal-5-OMe)]A·sol (qsal-5-X = 5-X-2-[(8-quinolylimino)methyl]phenolate; A = NO3-1 sol = 2MeOH, NCS-2 sol = 0.75MeOH·1.3H2O, BF4-3 sol = MeOH, OTf-4, sol = MeOH) complexes have been synthesized. Most of the complexes exhibit gradual SCO, with the exception of NCS, which is principally high spin. In contrast, the OTf complex shows an abrupt hysteretic SCO (35 K) after solvent loss. The magnetic properties of this complex are significantly improved in comparison to the related homoleptics, [Fe(qsal-I)2]OTf 5 (hysteresis, 8 K) and [Fe(qsal-5-OMe)2]OTf·CH2Cl26 (gradual SCO). Structural studies reveal that slight changes in the crystal packing cause stronger interactions improving the cooperativity. These findings are supported by DFT calculations using the r2SCAN functional in which the calculated structures show that SCO from the LS to the HS state causes pronounced scissoring of the 1D π-π chains and substantial changes in their relative orientation following loss of MeOH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.