Abstract
This paper presents spike derivatives as a tool for spike feature extraction to improve the separation of similar neurons. The theoretical framework of neuronal geometry signatures and noise shaping to perform the spike derivative is formulated first, and based on the derivations we show that the first derivative of the spikes manifests the waveform difference contributed by the geometry signatures and also reduces the associated low-frequency noise. Quantitative comparisons of sorting neurons using spikes and their derivatives are performed on spike sequences from a public database, and improved results are observed when using spike derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.