Abstract

This paper aims to improve the accuracy and the efficiency of high resolution land cover mapping in urban area. To this end, an improved approach for classification of hyperspectral imagery is proposed and evaluated. This approach benefits from both inherent spectral and spatial information of an image. The weighted genetic (WG) algorithm is first used to obtain the subspace of hyperspectral data. The obtained features are then fed into the enhanced marker-based minimum spanning forest (EMSF) classification algorithm. In this algorithm, the markers are extracted from the classification maps obtained by both support vector machine and watershed segmentation algorithm classifiers. For this purpose, the class’s pixels with the largest population in the classification map are kept for each region of the segmentation map. Then, the most reliable classified pixels are chosen from among the exiting pixels as markers. To evaluate the efficiency of the proposed approach, three hyperspectral data sets acquired by ROSIS-03, Hymap and Hyper-Cam LWIR are used. Experimental results showed that the proposed WG–EMSF approach achieves approximately 9, 8 and 6% better overall accuracy than the original MSF-based algorithm for these data sets respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.