Abstract

Abstract The spectral mismatch between solar cells and incident radiation is a fundamental factor limiting their efficiencies. There exist materials and luminescent processes which can modify the incident sunlight’s properties to better suit the cell’s optimal absorption regions. This makes for an interesting area of research and promising technique for enhancing the efficiency of solar cells which is important for environmental reasons. It is intended for this review to provide the reader with historical and up-to-date developments of the application of spectral modification to solar cells and contribute to growing its impact on real-world PV devices. We concisely outline the underlying principles of three spectral modification processes: upconversion (UC), downconversion (DC) and luminescent downshifting (LDS). For each section we present up to date experimental results for applications to a range of solar PV technologies and discuss their drawbacks. With particular focus on UC, we then review how nanostructures or integrated optics might overcome these problems. Finally, we discuss practical challenges associated with advancing this approach for commercialisation and opportunities spectral modification presents; namely where future research should focus and via a cost analysis with a simple formula that can be used to determine financial viability for the deployment of this technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.