Abstract

Dynamic technological progress has contributed to the development of systems imaging of the Earth’s surface as well as data mining methods. One such example is super-resolution (SR) techniques that allow for the improvement of the spatial resolution of satellite imagery on the basis of a low-resolution image (LR) and an algorithm using deep neural networks. The limitation of these solutions is the input size parameter, which defines the image size that is adopted by a given neural network. Unfortunately, the value of this parameter is often much smaller than the size of the images obtained by Earth Observation satellites. In this article, we presented a new methodology for improving the resolution of an entire satellite image, using a window function. In addition, we conducted research to improve the resolution of satellite images acquired with the World View 2 satellite using the ESRGAN network, we determined the number of buffer pixels that will make it possible to obtain the best image quality. The best reconstruction of the entire satellite imagery using generative neural networks was obtained using a Triangular window (for 10% coverage). The Hann-Poisson window worked best when more overlap between images was used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.