Abstract

<span>Nowadays the entire world depends on emails as a communication tool. Spammers try to exploit various vulnerabilities to attack users with spam emails. While it is difficult to prevent spam email attacks, many research studies have been developed in the last decade in an attempt to detect spam emails. These studies were conducted using machine learning techniques and various types of neural networks. However, with all their attempts the highest accuracy acquired was 94.2% by random forest classifier. Deep learning techniques have demonstrated higher accuracy performance compared to the traditional machine learning algorithms. In this paper, deep recurrent neural network was used to determine whether an email is a spam email. After investigating different configurations for this method, the best setting that generated the highest accuracy was based on using Tanh as the activation function with the dropout rate equals to 0.1 and the number of epochs achieving 100. The proposed approach attained a high accuracy of 99.7% which surpassed the best accuracy (98.7%) obtained by the hybrid gated recurrent unit recurrent neural network approach.</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.